Mr. Batter	n's Physics	Period:	Date:	ID: A
Practice	Quiz Chapter	12		
Numeric F	Response			
1.	Years ago, a blocice was $0.0^{\circ}C$ absorb?	ck of ice with a mass of about 2	20kg	
2. A 40.0g sample of chloroform is condenses from a vapor at 61.6° C to a liquid at 6 9870J of heat. What is the heat of vaporization of chloroform?				at $61.6^{\circ}C$. It liberates
	\			
3.	to thermal energ	y and none of it leaves the bull	a steel plate and stops. If all of its et, what is the temperature change etic Energy are measured in Joules	e of the bullet?
4.		ss of tungsten at $100.0^{\circ}C$ is p $1.6^{\circ}C$. Calculate the specific 1	laced in $2.00x 10^2 g$ of water at 2 heat of tungsten.	$0.0^{\circ}C$. The mixture reaches

5. How much heat is added to 10.0g of ice at $-20.0^{\circ}C$ to convert it to steam at $120.0^{\circ}C$?

Practice Quiz Chapter 12 Answer Section

NUMERIC RESPONSE

1.
$$\Delta Q = (20kg) \left(\frac{3.34x \cdot 10^5 J}{kg} \right) = 6.68x \cdot 10^6 J$$

2.
$$H_v = \frac{Q}{m} = \frac{9.87 \times 10^3 J}{.040 g} = \frac{9.87 \times 10^3 J}{4.0 \times 10^{-2} kg} = 2.468 \times 10^5 J/kg$$

3.
$$\Delta Q = \Delta K = \frac{1}{2}mv^2 = mC\Delta t \rightarrow \Delta t = \frac{v^2}{C2}$$

$$\Delta t = \frac{(275 \, m \, / \, s)^2}{\left(\frac{130 \, J}{kg \cdot k}\right)^2} = 291^\circ$$

4.
$$\Delta Q = mC\Delta t \rightarrow C = \frac{\Delta Q}{m\Delta t} = \frac{m_{_{W}}C_{_{W}}\Delta t_{_{W}}}{m_{_{t}}\Delta t_{_{t}}} = \frac{\left(.20kg\right)\left(4180j/kg\cdot K\right)(1.6^{\circ}K)}{\left(.10kg\right)(78.4^{\circ}K)}$$

$$= 170.6 \rightarrow \frac{171J}{kg \cdot K}$$

5.
$$\Delta Q = \Delta Q_s + H_f + \Delta Q_l + H_v + \Delta Q_g$$

$$\rightarrow (.010kg) \left((20°K)(2060) + \left(3.34x10^5 \right) + (100°K)(4180) + \left(2.26x10^6 \right) + (20°K)(220) \right)$$

$$\rightarrow (.010kg) \left(4.12x10^4 J + 3.34x10^5 J + 4.18x10^5 J + 2.26x10^6 J + 4.04x10^4 J \right)$$

$$= 3.09x10^4 J$$